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Numerical simulations of viscous flows using a meshless method
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SUMMARY

This paper uses the element-free Galerkin (EFG) method to simulate 2D, viscous, incompressible flows.
The control equations are discretized with the standard Galerkin method in space and a fractional step
finite element scheme in time. Regular background cells are used for the quadrature. Several classical
fluid mechanics problems were analyzed including flow in a pipe, flow past a step and flow in a driven
cavity. The flow field computed with the EFG method compared well with those calculated using the
finite element method (FEM) and finite difference method. The simulations show that although EFG is
more expensive computationally than FEM, it is capable of dealing with cases where the nodes are poorly
distributed or even overlap with each other; hence, it may be used to resolve remeshing problems in direct
numerical simulations. Flows around a cylinder for different Reynolds numbers are also simulated to study
the flow patterns for various conditions and the drag and lift forces exerted by the fluid on the cylinder.
These forces are calculated by integrating the pressure and shear forces over the cylinder surface. The
results show how the drag and lift forces oscillate for high Reynolds numbers. The calculated Strouhal
number agrees well with previous results. Copyright q 2008 John Wiley & Sons, Ltd.
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1. BACKGROUND

Meshless methods originated about 20 years ago with several branches such as smoothed particle
hydrodynamics [1], reproducing kernel particle method [2], diffuse element method [3] and
element-free Galerkin method (EFG) [4]. The objective of meshless methods is to eliminate at
least part of the mesh by constructing an approximation entirely in terms of nodes.
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At present, meshless methods are mainly applied in the field of solid mechanics, which have
some advantages for simulations of molding and crack propagation [4, 5]. There have been few
applications of meshless methods in fluid mechanics, since finite element method (FEM) and finite
difference method (FDM) are able to solve most fluid problems. However, for some particular cases
such as interface/free-face flows [6] and fluid–particle flows, methods based on meshes such as the
FEM have to remesh at each step as the flow evolves so that the mesh lines remain coincident with
the moving surfaces or boundaries throughout the solution. This introduces numerous difficulties
such as the need to project between meshes in successive stages of the problem, which leads
to degradation of accuracy and complexity in the computer program, not to mention the burden
associated with a large number of remeshings [7]. Although many meshless methods require
meshes in at least part of the domain, moving boundaries can usually be treated without remeshing
with minor costs in accuracy degradation. Thus, large classes of problems can be solved, which
are very awkward with mesh-based methods.

We use this method in fluid dynamics in order to solve these kinds of problems such as the
particle collision problem in multiphase flows. The restriction of meshes makes it very difficult
for mesh-based direct numerical simulation methods to deal with cases where there are particle
collisions. Hence, the particle collision becomes a key problem in the direct numerical simulation
of in multiphase flows. Daniel D. Joseph said [8], ‘It is not possible to simulate the motion of even
a moderately dense suspension of particles without a strategy to handle cases in which particles
touch.’ First of all, we use some classic examples to prove the accuracy and precision of this
method. In this paper, the EFG method was used to simulate 2D, viscous, incompressible flows.
The results from the EFG method are compared with FEM and FDM predictions. The advantages
and disadvantages of the applications of EFG and FEM in fluid mechanics are discussed as well.
Furthermore, the unsteady flow around a 2D cylinder is also analyzed to predict the flow patterns
for different Reynolds numbers. The predicted Strouhal number for vortex shedding is in good
agreement with previous results. Our further research is to realize real collisions between particles
with this meshless method.

2. THE EFG METHOD

Consider an approximation of a single function u(x) in a domain �. The domain � is assumed
to be described by the usual methods of computational geometry. Within the domain, a set of
nodes xI , I =1 to n, is constructed and the approximation associated with the function at node I
is denoted by uI .

A common feature of all meshless methods is a weight function. A weight function is defined
to have compact support, i.e. the subdomain over which it is nonzero is small relative to the rest
of the domain. Each subdomain �I is associated with a node I . The support is often called the
domain of influence of a node. The most commonly used subdomains are discs or rectangles, as
shown in Figure 1. The domain here is indicated by bold lines with thin lines used for the supports
of the weight function.

The EFG method uses the moving least-square approximation to construct the shape functions.
In the approximation, let

u(x)=
m∑
j=1

p j (x)a j (x)=pT(x)a(x) (1)
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Figure 1. Computational model for a meshless method showing the boundary, nodes and supports.

where m is the number of terms in the basis function, pi (x) are monomial basis functions and
ai (x) are their coefficients, which are functions of the spatial coordinate x . The commonly used
2D basis is the linear basis

pT(x)=[1 x y], m=3

Lancaster and Salkauskas [9] defined a local approximation by

uh(x,x)=
m∑
j=1

p j (x)a j (x)=pT(x)a(x) (2)

x is the spatial coordinate of nodes that are in the domain of point x . The coefficients ai (x) are
obtained by performing a weighted least-square fit for the local approximation, which is obtained
by minimizing the difference between the local approximation and the function. This yields the
quadratic form

J (x)=
n∑

I=1
w(x−xI )[u(x,xI )−uI ]2=

n∑
I=1

w(x−xI )[pT(xI )a(x)−uI ]2 (3)

where w(x−xI ) is a weighting function with compact support and n is the number of the nodes
that have an effect on point x . The least-square method is used to find the coefficients a(x)

�J (x)

�a(x)
=A(x)a(x)−B(x)u=0 (4)

where A(x)=PTW(x)P and B(x)=PTW(x), then

a(x)=A−1(x)B(x)u (5)

Substituting Equation (5) into Equation (1) gives

u(x)=PT(x)A−1(x)B(x)u (6)
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The weight function greatly influences the methodology. In this paper [10]

wI (x)=

⎧⎪⎪⎨
⎪⎪⎩

r2i
r2I +1

(
1− r2i

r2I

)8

, rI�ri

0, rI>ri

(7)

where rI =‖x−xI‖ is the distance from x to xI , and ri is the radius of the influence domain of
node I .

3. CONTROL EQUATIONS AND DISCRETIZATION

The control equations for 2D, viscous, incompressible flow are

�ui
�t

+u jui, j = − p,i

�
+�(ui, j +u j,i ), j + fi

ui,i = 0

(8)

Using the three-step finite element scheme introduced by Jiang et al. [11]
un+1/3
i −uni

�t/3
= −unj u

n
i, j −

pn,i
�

+�(uni, j +unj,i ), j + f ni

un+1/2
i −uni

�t/2
= −un+1/3

j un+1/3
i, j − pn,i

�
+�(un+1/3

i, j +un+1/3
j,i ), j + f n+1/3

i

un+1
i −uni

�t
= −un+1/2

j un+1/2
i, j − pn+1

,i

�
+�(un+1/2

i, j +un+1/2
j,i ), j + f n+1/2

i

(9)

Then discretizing Equation (9) with the standard Galerkin method,

M��

un+1/3
i� −uni�

�t/3
= −Nn

��u
n
i�−

Li�� p
n
�

�
−�Sni�+M�� f ni�

+
∫

�
���(u

n
i, j +unj,i ) ·ni d� (10)

M��

un+1/2
i� −un+1/3

i�

�t/2
= −Nn+1/3

�� un+1/3
i� −

Li�� p
n
�
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i� +M�� f n+1/3
i�

+
∫

�
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M��
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where the subscript � indicates summation over all values of � and

M�� =
∫ ∫

�e
���� d�

Li�� =
∫ ∫

�e
����,i d�

Nn
�� =

∫ ∫
�e

������, j u
n
j� d�

Sni� =
∫ ∫

�
��,i (��, j u

n
i�+��,i u
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j�)d�

(11)

As Equation (10) shows, un+1
i can only be calculated after pn+1 is calculated. The last formula

in Equation (10) gives the pressure Poisson equation for EFG

G�� p
n+1
�

�
=− 1

�t
Hi��u

n
i�−K j��u

n+1/2
j� −S� (12)

where

G�� =
∫ ∫

�e
��,i��,i d�

Hi�� =
∫ ∫

�e
����,i d�

K j�� =
∫ ∫

�e
��,i����, j u

n+1/2
i� d�

S� =
∫

�
��

un+1
i −uni

�t
d�

(13)

After pn+1 is obtained from Equation (12), un+1
i is calculated using Equation (10). This three-step

finite element scheme, which has no artificial parameters, is stable, even for high Reynolds number
simulations.

The approximate function of EFG is not determined by node variables. That is to say,

�I (xJ ) �=�I J ,

{
�I J =1, I = J

�I J =0, I �= J

Compared with FEM, it is more difficult to use boundary conditions. We use the Lagrange multiplier
method [12] to deal with boundary conditions.
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4. RESULTS AND DISCUSSIONS

Several classical 2D problems were solved here using the EFG method with the results than
compared with those from FEM and FDM calculations. There are time domains and in the initial
time, zero is assigned to the initial values of parameters at the nodes. The time step is 0.5e−01s
in all cases. The robustness of EFG is better than the FEM and FDM, and the irregular distribution
has little effect on the calculation results, as the FEM and FDM are not suitable for the irregular
distribution [13]. In order to compare with the FEM and FDM, the nodes are regularly distribution.

Case 1: Flow in a pipe. The pipe was 1m long and 0.5m wide. The fluid parameters were
�=1.21kg/m3, �=14.9×10−6m2/s and an inlet velocity of V =1.0mm/s. The simulation used
101∗51 nodes regularly distributed in the computational domain. The FEM used triangular elements
that connected these nodes, but the EFG method did not generate elements.

The x direction velocities at x=0.5m computed by FDM, FEM and EFG are given in Figure 2.
This figure shows that the EFG results agree well with those of FDM and FEM, as the curves
almost overlap each other.

Case 2: Flow past a step. The computational domain is shown in Figure 3. The fluid parameters
were �=1.21kg/m3, �=14.9×10−6m2/s and an inlet velocity of V =1.0mm/s. 10 301 nodes
were regularly distributed in the domain. Figure 3 shows the velocity field for the vortex behind
the step. The x direction velocities at x=2.5m are compared in Figure 4 with little difference
between the FDM, FEM and EFG results as shown in Figure 4.

Case 3: Flow in a driven cavity. The domain was 0.5m∗0.5m. The fluid parameters were
�=1.21kg/m3, �=14.9×10−6m2/s, and a Reynolds number of 400. 51∗51 nodes were regularly
distributed in the domain.

The x direction velocities at x=0.25m are compared in Figure 5. The EFG results agree well
with the FEM results, while there was some difference with FDM results.

In the simulations, the EFG calculations required more time than the FEM calculations, which
is the main disadvantage of the EFG method. However, for the FEM, once the mesh nodes in
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Figure 2. ux distribution at X =0.5m for flow in a pipe for Re=33.6.
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Figure 3. Velocity field for flow past a step for Re=33.6.
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Figure 4. ux distribution at X =2.5m for flow past a step.

-1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.1

0.2

0.3

0.4

0.5  FDM
 FEM
 EFG

y 
/ m

ux/(mm·s-1)

Figure 5. ux distribution at X =2.5m for flow in a driven cavity.
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the computational domain are fixed in advance, the computational precision cannot be improved
without changing the interpolating polynomial, unless new nodes are added into the domain, which
will introduce programming related to the remeshing because of the replacing of the original mesh
structure.

With the EFG method, although it is certainly necessary for adding new nodes to enhance the
precision in a specific domain, there are cheaper methods that can be used in EFG to enhance
the precision, such as increasing the number of background cells or enlarging the radius of the
weight function supports will also improve the accuracy. Adding new nodes in FEM and FDM
needs grid reconstruction. At the same time, if new nodes are added to the domain, there is no
need to make any changes to the programs since no mesh structure connects the nodes with the
meshless method. This flexibility is a substantial advantage of meshless methods in comparison
with the FEM.

Moreover, when nodes in the computational domain are poorly distributed, the FEM probably
distorts some elements that can affect the accuracy.

Figure 6. Distorted meshes generated by FEM.

Figure 7. EFG results with poorly distributed nodes.
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As shown in Figure 6, distorted meshes occur when the nodes are not evenly distributed. With
the FEM, non-uniform meshes require a smaller time step to ensure convergence, which greatly
increases the computational expense.

When the EFG method encounters such a non-uniform mesh, the instability due to the poorly
distributed nodes can be effectively eliminated by increasing the number of background cells and
by enlarging the radius of the supports. With these remedies, a smaller time step is not needed,
which will save computational time. With the four poorly distributed nodes in Figure 6, which are
too close to the node in the center, the EFG results in Figure 7 show that the simulation is not
adversely affected by this poor node distribution.

Furthermore, overlapping nodes can also be handled by the EFG method when the FEM would
fail. As shown in Figure 8, where the position of two overlapping nodes is denoted by a black
point at x=50cm, y=40mm, the EFG method still gives excellent results.

With verifying the effectiveness of the EFG method, flow around a cylinder was simulated for
different Reynolds numbers. The computational domain is shown in Figure 9.

The calculations used D=1m, a fluid density �=1.0kg/m3 and a parabolic velocity profile at
the inlet:

ux = 6U

H2
[(y− yB)H−(y− yB)2]

uy = 0
(14)

where U =1.0m/s is the mean velocity at the inlet; H =4.1D is the height of the channel. The
flow simulations used cylinder Reynolds numbers of 20, 100, 200 and 1000. The results are shown
in Figure 10.

The results in Figure 10 show that for low Reynolds numbers (Re=20, t=100s), symmetric
vortices form behind the cylinder. With increasing Reynolds number, the vortices behind the
cylinder grow and become asymmetric. Above a critical Reynolds number (which for a cylinder in
an infinite stream is about 40), the flow becomes unsteady and vortices are shed from the cylinder.
The flow at Re=100 went through a development stage and eventually became periodic with a

Figure 8. EFG results with overlapping nodes.
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Karman vortex street behind the cylinder. For Re>100, more vortices occurred as shown in the
figure. At Re=1000, the numerical result was still stable although the convection effect was very
strong.

y

2D 20D

xInlet
D

2.
1D

2D
Figure 9. Computational domain for 2D, viscous, incompressible flow around a cylinder.

Figure 10. Streamlines around a cylinder for different Reynolds numbers: (a) Re=20, t=100s;
(b) Re=100, t=100s; (c) Re=200, t=100s; and (d) Re=1000, t=82s.
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The vortex shedding causes both the drag and lift forces to oscillate. The drag and lift coefficients
were defined as

Cd = fx
�U 2/2

Cl = fy
�U 2/2

(15)

where fx and fy are the x and y components of the force exerted by the fluid on the cylinder.
These forces were calculated by integrating the pressure and shear forces over the cylinder surface.

Figure 11 shows the variation of the lift and drag coefficients on the cylinder in the channel at
Re=100 for the computational domain shown in Figure 9. If the domain were fully symmetric,
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Figure 11. Drag (above) and lift (below) coefficients on a cylinder in a channel at Re=100.
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the lift coefficient would oscillate around zero. However, the lift coefficient for the unsymmetrical
flow oscillates between Cl,min=−1.004 and Cl,max=1.085. The drag coefficient oscillates between
Cd,min=3.111 and Cd,max=3.180.

Figure 11 shows that the drag force oscillates at twice the frequency of the lift force. The drag
force has one maximum and one minimum during the growth and shedding of each vortex first
from the top and then from the bottom of the cylinder, while the sign of the lift force depends
on the vortex location, i.e. whether it is above or below the cylinder. The Strouhal number is
defined as

St = D

UT
(16)

where T is the oscillation period for Cl. For these calculations, T was about 3.4 s at Re=100
with the corresponding Strouhal number of 0.294 which is very close to 0.3018 given by Joel and
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Figure 12. Drag (above) and lift (below) on a cylinder in an unconfined channel.
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Figure 13. Variation of streamlines around a cylinder at Re=100 for half a period: (a) t=78.2s;
(b) t=78.6s; (c) t=79.0s; (d) t=79.4s; and (e) t=79.8s.

Milovan [14]. The confinement by the channel accelerates the vortex shedding; hence, the Strouhal
number is much higher than for a cylinder in an infinite steam. An unconfined flow around a
cylinder was also simulated with the Strouhal number being 0.204 for the lift coefficient data in
Figure 12 (the standard value is 0.18–0.2 [14]).

The vortex shedding process was investigated in more detail for Re=100. Figure 13 shows the
variation of the streamlines around a cylinder for one cycle. At t=78.2s, a small vortex forms
near the top of the cylinder. The vortex then expands and moves forward of the centerline of the
cylinder. At t=79.8s, another small vortex forms near the bottom of the cylinder. This completes
one half of the vortex shedding period with a corresponding Strouhal number of 0.3125, which is
very close to that given by Joel and Milovan [14].
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5. CONCLUSIONS

A comparison of the EFG and FEM methods shows that the precision of the EFG is better than
FEM with the same quantities of grid nodes. It is certainly necessary for adding new nodes
to enhance the precision in specific domain. However, adding new nodes in FEM needs grid
reconstruction. There are cheaper methods that can be used in EFG to enhance the precision,
such as increasing the number of background cells or enlarging the radius of the weight function
supports will also improve the accuracy. When new nodes are added, the FEM needs to partly
or fully remesh, while the EFG method can continue to calculate. The EFG method more easily
handles poorly distributed nodes or even overlapping nodes. Although consuming more time, the
EFG method is very promising for a great many complex problems such as interface/free-face
flows and multiphase flows because of the advantages.

The flow around a cylinder for different Reynolds numbers was also simulated with the EFG
method. The results by the EFG method agree well with previous studies, which shows that EFG
can effectively simulate laminar flow as an additional, very flexible computational method for
complex fluid mechanics problems.

The restriction of meshes makes particle collision problem in multiphase flows very difficult
for mesh-based direct numerical simulation methods to deal with cases where there are particle
collisions. Hence, the particle collision is a key problem in the direct numerical simulation of in
multiphase flows. The research in this paper shows that it is possible and precise to simulate the
fluid dynamics problems, laying the foundation for realizing real collisions between particles with
the EFG method. This will be done in our further research.
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